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Abstract. There is a class of planar 1D-continua which can be described exclusively by their placement functions
which in turn are curves in a two-dimensional space. In contrast to the Elastica for which the deformation energy
depends on the projection of the second gradient to the normal vector of the placement function, i.e. the material
curvature, the proposed continuum does also depend on the projection onto the tangent vector, introduced as the
stretch gradient. Thus the deformation energy takes into account the complete second gradient of the placement
function. In such a model non-standard boundary conditions and more generalized forces such as double forces do
appear. The deformation energy of the continuum is obtained by applying a heuristic homogenization procedure
to a family of slender discrete pantographic structures constituted by extensional and rotational springs. Within
the homogenisation process the overall length of the system is kept �xed, the number of the periodically appearing
subsystems, called cells, is increased and the sti�nesses are appropriately scaled. For two examples, we numerically
compare the family of discrete systems with the continuum. The analysis shows that the continuum represents the
behaviour of the discrete system already for a relatively moderate number of cells. In particular, the behaviour of
the deformation energy error between the discrete and the continuum model when the number of cells tends to
in�nity is determined by the homogenisation process.
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1. Introduction

The static behaviour of discrete systems consisting of springs connected with each other can easily get very complex.
For the analysis of such systems, a discrete model is not always the �rst choice. Especially, if the system is composed of
similar sub-systems which appear periodically, spatially continuous formulations are also able to capture the behaviour
of the system at large [1, 2, 3, 4, 5]. A particular class of such systems are so called pantographic structures [6, 7, 8],
i.e. pantographic mechanisms which are well known from everyday life such as pantographic mirrors, expanding
fences or scissor lifts. Discrete models of such structures are obtained, if the links in these systems are modelled
by extensional and rotational springs being hinge-joined together [9, 10, 11]. Thus the links themselves are allowed
to deform. These systems exhibit a peculiar null-energy deformation mode apart from the rigid body mode. A
deformation mode which is sometimes also referred to as extensional �oppy mode [12], and which is characterized
by its accordion-like (homogeneous) extension or compression forming a rhomboidal pattern. These pantographic
structures [13, 14, 15] have shown to be the simplest example of structures whose continuum descriptions result in a
wealth of non-standard problems in the theory of higher-gradient and micromorphic continua [16, 17, 9, 18] and to
their related mathematical challenges [19]. Insofar, pantographic structures have proven to be an archetype in the
mechanics of generalized media. This means that the overall behaviour of the system can be described synthetically
at a larger length scale, i.e. at a macro level, as a continuum model [20, 21, 22]. If we are instead interested in
the behaviour at the smaller length scale of the periodically appearing sub-systems, i.e. at a micro level, then the
more re�ned discrete model is required. Accordingly, when we henceforth refer to the discrete and the continuum
model, we will synonymously make use of the pre�xes micro and macro, respectively. To pass from a discrete model
into a continuum model homogenization techniques can be used [17, 23, 24, 25, 26]. These techniques require the
establishment of precise micro-macro correspondences. Consequently, such techniques allow to give a precise meaning
to many features of the macro-model in terms of those of the micro-model.

The last few decades have witnessed a high acceleration in the development of additive and subtractive tech-
niques such as 3D-printing [27], non-ablative femtosecond laser exposure [28], dry etching [29], wet chemical etching
[30], or micro-moulding [31]. These manufacturing processes allow for the design of materials possessing a highly-
controlled structure at length scales which are much smaller than those involved in many engineering systems.
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This partly justi�es the renewed research interest in homogenization and the systematic search [32, 33, 34] for new
micro-structures whose homogenised limits exhibit (desired) elastic extremal behaviour, e.g. auxetic, negative sti�-
ness, highly compliant, strongly non-linear, multistable, etc. This is the motif of the emerging �eld of (mechanical)
metamaterials [35, 36].

Recently, [37] presented preliminary results of the derivation and computation of a one-dimensional continuum
model being capable of describing the �nite planar deformation of a discrete slender pantographic structure, referred
to as pantographic beam. The continuum model was deduced from a discrete model applying a variational asymptotic
procedure [12, 17, 34, 38]. The proposed model generalizes the models derived in [12, 38], in which also Γ-convergence
results are available for the case of free-boundary conditions (cf. also [39]). The achieved continuum model in [37]
shows quite exotic features. It was shown that the deformation energy density of such a 1D-continuum does not only
depend on the material curvature but also on the stretch gradient. Moreover, the derived continuum can exhibit
phase transition [40] and negative sti�ness as well.

Besides the derivation of the continuum model, which is more pedagogical than the one presented in [37], the
aim of this paper is to numerically evaluate the di�erences between the micro- and the macro-model. We try to
elucidate to what extent the continuum retains the relevant phenomenology of the discrete system, notwithstanding
the unavoidable loss of information that a homogenisation process entails. In order to pursue this aim, it is crucial
to gain a better understanding of the involved asymptotic process, i.e. how the change of the micro length scale
a�ects the discrete model. Furthermore, special attention is given to the di�erence between the deformation energy
of the micro- and the macro-model when the micro length scale tends to zero, i.e. the discrete-continuum error.
This deviation gives a quantitative value to assess the quality of the approximation of the continuum by its discrete
counterpart and vice versa. In particular we want to show that the behaviour of the energy error is determined by
the homogenization process.

2. Heuristic homogenisation

The continuum is deduced by applying Piola's micro-macro identi�cation procedure [17, 41], which can be considered
as a heuristic variational asymptotic procedure. The general idea how this procedure is applied in the present case
for a one-dimensional continuum is as follows:

(i) A family of discrete spring systems embedded in the two-dimensional Euclidean vector space E2, i.e. the micro-
model with micro length scale ε > 0, is introduced � generalized coordinates and energy contributions Eε are
de�ned

(ii) The kinematic descriptors of the continuum, i.e. the macro-model, are introduced as continuous functions with
a closed subset of the real numbers as their common domain � these functions must be chosen such that their
evaluation at particular points can be related to the generalized coordinates of the micro-model

(iii) Formulation of the deformation energy of the micro-model Eε using the evaluation of the continuum descriptors
at particular points, followed by a Taylor expansion of the energy with respect to the micro length scale ε

(iv) Speci�cation of scaling laws for the constitutive parameters in the micro-model followed by a limit process in
which the energy of the continuum E is related to the micro-model by E = lim

ε→0
Eε

2.1. Discrete model

The assembly and kinematics of the system are sketched in Fig. 1. In the undeformed con�guration, see Fig. 1(a),
N cells are arranged upon a straight line in direction of the unit basis vector ex ∈ E2. The total length L ∈ R of
the undeformed pantographic beam accounts for N − 1 cells, as depicted in Fig. 1(a). The cells are centred at the
positions Pi = iεex for i ∈ {0, 1, . . . , N − 1} with ε = L/(N−1). The basic i-th unit cell is formed by four extensional
springs hinge-joined together at Pi. Rotational springs, which are coloured in blue and red in Fig. 1(d), are placed
between opposite collinear springs belonging to the same cell. Note that the extensional springs are rigid with respect
to bending such that they can transmit torques. White-�lled circles in Fig. 1 represent hinge constraints, requiring
the end points of the corresponding springs to have the same position in space.

When not otherwise mentioned, the indices i, µ and ν belong henceforth to the following index sets: i ∈
{0, 1, . . . , N − 1}, µ ∈ {1, 2} and ν ∈ {D,S}1. The kinematics of the spring system is locally described by �nitely
many generalized coordinates. The coordinates are the positions pi ∈ E2 of the points at position Pi in the reference
con�guration and the lengths of the oblique deformed springs lµνi ∈ R. Nevertheless, we introduce various other

1D stands for dextrum, S for sinistrum.
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Figure 1. (a) Undeformed con�guration (b) Generalized coordinates of i-th cell (c) Deformed
con�guration with redundant kinematic quantities (d) Force elements of a single cell.

kinematical quantities to formulate the total potential energy in a most compact form. Applying the law of cosines,
the angles ϕµνi depicted in Fig. 1(c) are determined by the relations

ϕ1D
i = cos−1

[
‖pi+1 − pi‖2 +

(
l1Di
)2 − (l2Si+1

)2
2l1Di ‖pi+1 − pi‖

]
,

ϕ2D
i = cos−1

[
‖pi+1 − pi‖2 +

(
l2Di
)2 − (l1Si+1

)2
2l2Di ‖pi+1 − pi‖

]
,

ϕ1S
i = cos−1

[
‖pi − pi−1‖2 +

(
l1Si
)2 − (l2Di−1)2

2l1Si ‖pi − pi−1‖

]
,

ϕ2S
i = cos−1

[
‖pi − pi−1‖2 +

(
l2Si
)2 − (l1Di−1)2

2l2Si ‖pi − pi−1‖

]
.

(1)

For a ∈ E2, ‖a‖ =
√
a · a corresponds to the norm induced by the inner product denoted by the dot. Note that

ϕµS0 and ϕµDN−1 cannot be determined by the relations (1) and belong strictly speaking also to the set of generalized
coordinates. However, for the sake of brevity we will often omit them. Another restriction is that the choice of
generalized coordinates holds only locally, as long as the angles ϕ1D

i and ϕ2D
i do not change sign. Throughout the

derivation of the macro-model, we will assume that the angles ϕ1D
i and ϕ2D

i remain in the range (0, π). For the
reduced index set i = {1, 2, . . . , N − 2}, the angle between the two vectors pi − pi−1 and ex is denoted by ϑi. Then
the angle θi between the vectors pi − pi−1 and pi+1 − pi can easily be determined by

θi = ϑi+1 − ϑi = tan−1
[

(pi+1 − pi) · ey
(pi+1 − pi) · ex

]
− tan−1

[
(pi − pi−1) · ey
(pi − pi−1) · ex

]
. (2)

We set θ0 = θ1 and θN−1 = θN−2 such that the deviation angles of two adjacent oblique springs from being collinear
are given for the entire index set of i by

β1
i = θi + ϕ1D

i − ϕ1S
i , β2

i = θi + ϕ2S
i − ϕ2D

i . (3)

For the undeformed con�guration, see Fig. 1(a), we have

lµνi =

√
2

2
ε , β1

i = β2
i = 0 , ‖pi − pi−1‖ = ε . (4)
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Letting the summations for i, µ and ν range over the above introduced sets {0, . . . , N − 1}, {1, 2} and {D,S},
respectively, the micro-model deformation energy is de�ned as

Eε =
kE
2

∑
i

∑
µ,ν

(
lµνi −

√
2

2
ε

)2

+
kF
2

∑
i

∑
µ

(βµi )
2

(3)
=
kE
2

∑
i

∑
µ,ν

(
lµνi −

√
2

2
ε

)2

+
kF
2

∑
i

∑
µ

[
θi + (−1)

µ
(
ϕµSi − ϕ

µD
i

)]2
,

(5)

with kE , kF > 0 being the sti�nesses of the extensional and rotational springs, respectively. Boundedness of the
deformation energy, both for the micro-model and for the macro-model is considered throughout this paper. It is
worth remarking that besides the rigid body modes also the set of admissible con�gurations de�ned by

lµνi =

√
2

2
ε , pi = pi−1 +Kex , p0 = P0 , for K ∈

(
0,
√

2ε
)
, (6)

entails null deformation energy, and is referred to as extensional �oppy mode [12].
For the lengths lµνi of the oblique springs, we assume the asymptotic expansion

lµνi =

√
2

2
ε+ ε2 l̃µνi + o(ε2) , (7)

where l̃µνi ∈ R. Inserting assumption (7) into the energy (5) leads to

Eε =
kE
2

∑
i

∑
µ,ν

[
ε2 l̃µνi + o(ε2)

]2
+
kF
2

∑
i

∑
µ

[
θi + (−1)

µ (
ϕµSi − ϕ

µD
i

)]2
. (8)

2.2. Micro-macro identi�cation

The slenderness of the discrete system makes it reasonable to aim for a one-dimensional continuum [42] in the limit
of vanishing ε. The continuum is then parametrised by the arclength s ∈ [0, L] of the straight segment of length L
connecting all points Pi. We assume the independent kinematic Lagrangian descriptors of the macro-model to be the
functions

χ : [0, L]→ E2 , l̃µν : [0, L]→ R . (9)

The placement function χ places the 1D-continuum into E2 and is best suited to describe the points pi ∈ E2 of the
discrete system on a macro-level. To take into account also the e�ect of changing spring lengths l̃µνi introduced in

(7), the placement function is augmented by the four micro-strain functions l̃µν . We thus suggest the identi�cation
of the discrete system with a one-dimensional continuum which can be classi�ed as a micromorphic continuum, cf.
[43, 44, 45, 46]. It is also convenient to introduce the functions ρ : [0, L] → R+ and ϑ : [0, L] → [0, 2π) in order to
rewrite the tangent vector �eld χ′ as

χ′(s) = ρ(s) [cosϑ(s)ex + sinϑ(s)ey] , (10)

where prime denotes di�erentiation with respect to the reference arc length s. Thus ρ corresponds to the norm of
the tangent vector ‖χ′‖ and is referred to as stretch. We explicitly remark that the current curve χ([0, L]) can in

general have a length
∫ L
0
ρ ds di�erent from L, as s is not an arc-length parametrization for χ but for the reference

placement χ0(s) = sex. Introducing moreover the normal vector �eld χ′⊥(s) = ρ(s) [− sinϑ(s)ex + cosϑ(s)ey], being
rotated against χ′(s) about 90◦ in anti-clockwise direction, it can be seen by straight forward computation that

ρ′(s) =
χ′(s) · χ′′(s)
‖χ′(s)‖

, ϑ′(s) =
χ′′(s) · χ′⊥(s)

‖χ′(s)‖2
. (11)

In the following ρ′ and ϑ′ are called stretch gradient and material curvature, respectively.
For Piola's micro-macro identi�cation we relate the generalized coordinates of the discrete system with the

functions (9) evaluated at si = iε such that

χ(si) = pi , l̃µν(si) = l̃µνi . (12)

For the asymptotic identi�cation, we need to expand the energy (8) in ε. To approach this, the expansion of χ is
given by

χ(si±1) = χ(si)± εχ′(si) +
ε2

2
χ′′(si) + o(ε2) . (13)
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Combining the asymptotic expansion (7) with (12)2, we have

lµνi±1 =

√
2

2
ε+ l̃µν(si±1)ε2 + o(ε2) . (14)

Substituting l̃µν(si±1) = l̃µν(si) + o(ε0) in (14), we obtain

lµνi±1 =

√
2

2
ε+ l̃µν(si)ε

2 + o(ε2) . (15)

In order to further expand (8), we subsequently need to expand the terms θi and ϕ
µS
i − ϕ

µD
i up to �rst order. The

detailed expansion is given in the App. A. For θi we have according to (56)

θi = ϑ′(si)ε+ o(ε) . (16)

The di�erences ϕµSi − ϕ
µD
i are given by (63) and (64) as

ϕµSi − ϕ
µD
i =

√
2(ρ2)′ + 4

[
(l̃(3−µ)D − l̃(3−µ)S) + (ρ2 − 1)(l̃µS − l̃µD)

]
2
√

2ρ
√

2− ρ2

∣∣∣∣∣
s=si

ε+ o(ε) . (17)

Substituting (16) and (17) into (5) together with ρ(si) = ‖χ′(si)‖, we compute the desired expansion of the micro-

model energy Eε as a function of the kinematic descriptors χ and l̃µν as

Eε =
kEε

4

2

∑
i

[(
l̃1S
)2

+
(
l̃1D
)2

+
(
l̃2S
)2

+
(
l̃2D
)2

+ o(ε0)
]
s=si

+
kF ε

2

2

∑
i

[
ϑ′ +

−
√

2(ρ2)′ − 4
[
(l̃2D − l̃2S)− (ρ2 − 1)(l̃1D − l̃1S)

]
2
√

2ρ
√

2− ρ2
+ o(ε0)

]2
s=si

+
kF ε

2

2

∑
i

[
ϑ′ +

√
2(ρ2)′ + 4

[
(l̃1D − l̃1S) + (ρ2 − 1)(l̃2S − l̃2D)

]
2
√

2ρ
√

2− ρ2
+ o(ε0)

]2
s=si

.

(18)

Let the parameters KE ,KF > 0 be constants, which do not depend on ε. Then these constants are related to
the sti�nesses of each discrete system with micro length scale ε by a scaling law

kE = KEε
−κ , kF = KF ε

−η , (19)

with the scaling parameters κ and η. By choosing κ = 3 and η = 1 in (19), observing that
∑
i o(ε

n) = o(εn−1), the
global remainder in the energy (18) becomes o(ε0). This remainder speci�es the deformation energy error between
the discrete and the continuum model, called discrete-continuum energy error.

2.3. Macro-model

The continuum limit is now obtained by letting ε→ 0 and considering the sum to turn into an integral according to∑
i f(si)ε

ε→0−→
∫ L
0
f ds, where f is a real valued function de�ned on [0, L]. Using (18) together with the scaling law

(19) for κ = 3 and η = 1, the deformation energy for the homogenized macro-model becomes

E =

∫ L

0

KE

2

[(
l̃1S
)2

+
(
l̃1D
)2

+
(
l̃2S
)2

+
(
l̃2D
)2]

ds

+

∫ L

0

KF

2

[
ϑ′ +

−
√

2(ρ2)′ − 4
[
(l̃2D − l̃2S)− (ρ2 − 1)(l̃1D − l̃1S)

]
2
√

2ρ
√

2− ρ2

]2
ds

+

∫ L

0

KF

2

[
ϑ′ +

√
2(ρ2)′ + 4

[
(l̃1D − l̃1S) + (ρ2 − 1)(l̃2S − l̃2D)

]
2
√

2ρ
√

2− ρ2

]2
ds .

(20)

The basic properties of the energy are preserved during the asymptotic process. Both the energy of the micro- and the
macro-model (5) and (20), respectively, are invariant under superimposed rigid body motions. Also the extensional

�oppy mode of the discrete model, see (6), transfers to the continuum. Namely, if ρ′ = ϑ′ = l̃µν = 0, a constant

stretch ρ(s) = K ∈ (0,
√

2) can still be present without causing any change in the deformation energy.
The above choice of the scaling parameters is such that kF/kE ≈ ε2 asymptotically, as ε → 0. This means that

the extensional springs sti�en much faster than the rotational ones as ε→ 0.
Let us de�ne the deformation energy density ψ as the integrand of (20). For the energy to be stationary, the

necessary conditions are obtained by the variation of the deformation energy functional (20). To begin with, we
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can also carry out only the variation with respect to l̃µν . This results in a linear system of 4 equations given by
∂ψ/∂l̃µν = 0 in which l̃µν are the unknowns. Introducing the abbreviations

C1 =
2KF

4KF (ρ2 − 2)−KEρ2
, C2 =

2
√

2− ρ2KF

KE (ρ2 − 2)− 4KF ρ2
, (21)

some necessary conditions for equilibrium are that

l̃µD =

√
2

2
ρ
[
ρ′C1 + (−1)µ−1ϑ′C2

]
, l̃µS =

√
2

2
ρ [−ρ′C1 + (−1)µϑ′C2] . (22)

To solve for l̃µν , we made use of a computer algebra program. Note that l̃1D = −l̃1S and l̃2D = −l̃2S . Moreover,
if χ′ = ρex with ρ = K ∈ (0,

√
2), it follows from (22) that l̃µν = 0. Hence the independent conditions for the

extensional �oppy mode are that ρ′ = ϑ′ = 0. We further remark that, if ϑ′ = 0, then, from (22), we have that
l1D = l2D and l1S = l2S .

Expanding the brackets in (20), it can readily been seen that the energy contains linear and quadratic terms

in l̃µν . Asking the coe�cient of (l̃µν)2 to be strictly positive, the total deformation energy functional (20) is strictly
convex in lµν . Thus convexity is equivalent to the condition that

KE

KF
> 2

(
1 +

1

ρ2 − 2
− 1

ρ2

)
. (23)

Since the right hand side of the inequality (23) is strictly negative for ρ ∈ (0,
√

2), the inequality is always satis�ed.
Accordingly, the set of micro-strains (22) minimizes the deformation energy (20).

By substituting the results (22) into (20), we perform a kinematic reduction resulting in the deformation energy
functional of the pantographic beam

E =

∫ L

0

KEKF

[
ρ2 − 2

ρ2 (KE − 4KF )− 2KE
ϑ′

2
+

ρ2

(2− ρ2) [ρ2 (KE − 4KF ) + 8KF ]
ρ′

2
]

ds , (24)

which merely depends on the placement function χ. Notice that the complete second gradient χ′′ contributes to
the deformation energy. Indeed, besides the term

(
χ′⊥ · χ′′

)
being related to the material curvature ϑ′ by means

of (11)1, also the term
(
χ′ · χ′′

)
appears which in turn is related to the stretch gradient ρ′ given by the relation

(24)2. We further remark that the bending sti�ness in (24), i.e. the coe�cient of ϑ′2, does not only depend on the
scaled sti�nesses of the elements of the microstructure, but also on ρ. An analogous observation can be done for the
coe�cient of ρ′2. Besides, we notice that the deformation energy (24) is strictly positive for 0 < ρ <

√
2 and ϑ′, ρ′

di�erent from zero, as so are the coe�cients of ϑ′ and ρ′ in (24).

In the limit ρ →
√

2, the energy (24) reveals a phase transition of the model. While the bending sti�ness, i.e.
the coe�cient of ϑ′2, tends to zero, the coe�cient of ρ′2 tends to in�nity. As we assumed boundedness of the energy,
the stretch gradient ρ′ must therefore tend to zero. Accordingly, the pantographic beam locally degenerates into a
model of a uniformly extensible cable.

The pantographic beam problem can also be formulated by an augmented energy functional

Ẽ = E +

∫ L

0

Λ · [χ′ − ρ(cosϑex + sinϑey)] ds . (25)

in which the �elds χ, ρ and ϑ are regarded as independent kinematic descriptors. We de�ne Ψ̃ as the sum of Ψ
and the integrand in Eq. (25). The Lagrange multiplier �eld Λ enforces weakly the relations (10). The procedure for
obtaining the corresponding Euler-Lagrange equations, not needed for our purposes and thus also not reported here,
leads to the following boundary conditions in strong non-dual form

(n) ρ′(0) = 0 ∨ (e) ρ(0) = ρ0 , (n) ρ′(L) = 0 ∨ (e) ρ(L) = ρL

(n) ϑ′(0) = 0 ∨ (e) ϑ(0) = ϑ0 , (n) ϑ′(L) = 0 ∨ (e) ϑ(L) = ϑL .
(26)

By (n) and (e) we denote natural and essential boundary conditions, respectively. The conditions for the Lagrange
multiplier �eld is given in strong dual form

Λ(0) · δχ(0) = 0 , Λ(L) · δχ(L) = 0 , (27)

which must hold for any kinematically admissible variation δχ of χ. Let us now make explicit the sets of boundary
conditions entailing ϑ′ = 0 everywhere. To this aim, let us consider the following sets of kinematic quantities evaluated
at the boundary: 1. {χ|0∧L ·ex,with ‖χ0−χL‖ <

√
2L}, 2. {χ|0YL ·ex, ρ|0YL <

√
2}, and 3. {χ|0∨L ·ex, ρ|0∨L <

√
2},

with Y denoting the logical disjunction. If sets 1, 2 or 3 above are �xed as essential boundary conditions we get
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ϑ′ = 0, with ϑ being undetermined, unless the condition ϑ|0∨L = ϑ0 is enforced. In particular, �xing sets 1 or 2
above results in the extensional �oppy mode.

2.4. Simpli�cations of the energy

The choice κ < 3∨η < 1 in Eq. (19), including κ < 3Yη < 1 or even κ < 3∧η < 1, results in energy functionals which
are rather uninteresting from the macroscopic point of view and we do not intend to pay them further attention.
The choice κ = 3 and η = 1 in (19) is such that the energies deriving from all other possible choices can be obtained
from the energies (20) and (24) found by means of it.

Case κ < 3∨η < 1. The cases where κ < 3Yη < 1 or even κ < 3∧η < 1 are obtained by computing the limits of
(24) for KE → 0YKF → 0 or KE → 0∧KF → 0, respectively. All cases result in a trivial null energy functional which
is rather uninteresting for further analysis. The same trivial cases are achieved when choosing vanishing sti�nesses
kE , kF already in the micro-model.

Case κ > 3 ∧ η = 1. This scaling is obtained by computing the limit of (24) by letting KE → ∞. Using
l'Hospital's rule this results in

KF

∫ L

0

(
R(ρ)ϑ′

2
+

ρ′
2

2− ρ2

)
ds . (28)

with

R(ρ) =

{
0 if ρ =

√
2

1 else
. (29)

Moreover, this limit process leads to vanishing C1 and C2 in (21) and according to (22) even to vanishing l̃µν = 0.

Hence, the very same energy can also be computed by just setting l̃µν = 0 in (20). The deformation energy (28)
is given by two additive contributions, the �rst being the deformation energy of the Elastica [47]. Following the

arguments from above, if ρ→
√

2, then the continuum behaves locally like a uniformly extensible Elastica.

Note that this scaling captures the case in which the extensional springs become asymptotically so sti� to behave
like rigid links in the limit. In this way, it is also possible to recover the homogenised energy for the pantographic
slender system in Fig. 1 with rigid links in place of extensional springs. For a detailed computation we refer to [37].
This suggests that interchanging ε→ 0 and KE →∞ to kE →∞ and ε→ 0 leads to the same deformation energy.
Also for rigid links, the heuristic homogenisation still gives a o(ε0) discrete-continuum energy error.

Case κ = 3 ∧ η > 1. Carrying out the limit of (24) for KF →∞, again by applying l'Hospital's rule, we get

KE

4

∫ L

0

[
2− ρ2

ρ2
ϑ′

2
+

ρ2

(2− ρ2)2
ρ′

2
]
ds . (30)

The values of l̃µν expressed in terms of ρ and ϑ which are computed the same way are

l̃µD = −l̃µS =

√
2

2
ρ

[
ρ′

2(ρ2 − 2)
+ (−1)µ

√
2− ρ2
2ρ2

ϑ′

]
. (31)

In a straightforward although a bit cumbersome computation, it can readily be seen that the micro-strains of (31)
satisfy the two equalities

2ϑ′ρ
√

2
√

2− ρ2 = (−1)µ
(√

2(ρ2)′ + 4
[
(l̃µD − l̃µS) + (ρ2 − 1)

(
l̃(3−µ)S − l̃(3−µ)D

)])
. (32)

Similar to the previous case, the energy (30) can also be obtained by inserting the results (31) directly into (20).
Due to (32), the two last terms of (20) with the factor KF do vanish. In fact, it is the homogenised energy of the
pantographic slender system in Fig. 1 in which two opposite oblique springs are enforced to remain collinear.

Case κ > 3 ∧ η > 1. If both KE ,KF → ∞ the microstrains must vanish but also satisfy (31). Consequently,
also ρ′ = ϑ′ = 0 allowing the continuum only to deform in the extensional �oppy mode which is characterised by a
placement function such that χ′ = ρex with ρ = K ∈ (0,

√
2) together with a null energy functional.

Linearisation. Let the vector valued displacement �eld u be de�ned by u(s) = χ(s)−sex. From Taylor expansions
it follows that ϑ = tan−1(u′ · ey/(1 + u′ · ex)) = u′ · ey + o(‖u′‖) = o(‖u′‖0), ϑ′ = u′′ · ey + o(‖u′‖0), ρ = [(1 + u′ ·
ex)2 + (u′ · ey)2]

1
2 = 1 + u′ · ex + o(‖u′‖) = 1 + o(‖u′‖0), and ρ′ = u′′ · ex + o(‖u′‖0). Hence, the energy of (24) is∫ L

0

[
KEKF

KE + 4KF
‖u′′‖2 + o(‖u′‖0)

]
ds . (33)
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For small strain hypothesis the remainder o(‖u′‖0) in Eq. (33) can be neglected. In the limit of KE →∞, (33) leads
to

KF

∫ L

0

‖u′′‖2ds . (34)

This energy corresponds to the deformation energy in (5) with K+ = K− of [12], in which opposite links and the
rotational spring in between have been considered as a whole by linear and inextensible Euler-Bernoulli beams.

3. Computational aspects

In this section, the solution methods employed for the macro- and micro-model are brie�y recalled.

3.1. Finite element formulation of the macro-model

From the stationarity condition of the energy (25) follows the weak form equation∫ L

0

(
∂Ψ̃

∂ρ
δρ+

∂Ψ̃

∂ρ′
δρ′ +

∂Ψ̃

∂ϑ′
δϑ′ +

∂Ψ̃

∂Λ
· δΛ +

∂Ψ̃

∂χ′
· δχ′

)
ds = 0 , (35)

with δ(·) being kinematically admissible (·), which can then be solved numerically by a �nite element method. The
weak form package of the software COMSOL Multiphysics, which implements standard �nite element techniques (cf.
[48, 49]), was used for the discretisation and the subsequent solution procedure. Default settings were set. Essential
boundary conditions, see (26) and (27), were not ful�lled by the basis functions but enforced by additional Lagrange
multipliers. Quadratic Lagrangian polynomials were used as basis functions for the �elds ρ, ϑ and χ. For the �eld Λ
linear Lagrangian polynomials were applied. The mesh-size was taken uniformly equal to L/100. Energy convergence
of solutions was successfully checked for the mesh-size tending to 0.

3.2. Micro-model revisited

For solving the discrete micro-model directly and without making any of the hypotheses assumed for the derivation of
the continuum model, except for the scaling law (19), it is much more convenient to introduce an alternative global,
minimal set of generalized coordinates than the one used for the homogenisation. The kinematics of the discrete
system is entirely described by the nodal points pi and p

µν
i depicted in Fig. 2 as white �lled circles. the Cartesian

coordinates of the nodes are introduced as 2×1 matrices, i.e. as �row vectors�, in accordance with xi = (pi ·ex, pi ·ey)

and xµSi = (pµSi · ex, p
µS
i · ey). Hence, the f = 2(3N + 2) generalized coordinates are

q = (x0, · · · , xN−1, x1S0 , · · · , x1SN , x2S0 , · · · , x2SN )T ∈ Rf . (36)

Moreover, we introduce the Boolean connectivity matrices CµSi , CµDi ∈ R4×f de�ned by the relations

qµSi = (xi, x
µS
i )T = CµSi q qµDi = (xi, x

µS
i+1)T = CµDi q . (37)

These are the coordinates required to formulate the energy of the extensional springs. In the energies of the rotational
springs three points are involved. Accordingly, these coordinates are extracted by the connectivity matrices Cµi ∈ R6×f

de�ned by

q1i = (x1Si , xi, x
2S
i+1)T = C1

i q q2i = (x2Si , xi, x
1S
i+1)T = C2

i q . (38)

Figure 2. Nodal points of the micro-model.

Let qe = (x1, y1, x2, y2)T ∈ R4 be the coordinates of two points interconnected by an extensional spring.
Introducing the abbreviations ∆x = x2 − x1 and ∆y = y2 − y1, the distance between the two points is

l(qe) =
√

∆x2 + ∆y2 =
√

(x2 − x1)2 + (y2 − y1)2 . (39)
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The derivative with respect to qe is the row vector

∂l

∂qe
(qe) =

1

l(qe)
(−∆x,−∆y,∆x,∆y) . (40)

For the energy contributions of the rotational springs, we introduce a standard element with three points with
coordinates qr = (x1, y1, x2, y2, x3, y3) ∈ R6. With the abbreviations ∆x1 = x2 − x1, ∆x2 = x3 − x2, ∆y1 = y2 − y1
and ∆y2 = y3 − y2, the distances between the respective points are

l1(qr) =
√

∆x21 + ∆y21 , l2(qr) =
√

∆x22 + ∆y22 , (41)

with the corresponding derivatives

∂l1
∂qr

(qr) =
1

l1(qr)
(−∆x1,−∆y1,∆x1,∆y1, 0, 0) ,

∂l2
∂qr

(qr) =
1

l2(qr)
(0, 0,−∆x2,−∆y2,∆x2,∆y2) .

(42)

The angles between the ex-axis and the vectors ∆x1ex + ∆y1ey and ∆x2ex + ∆y2ey, respectively, are introduced by
the relations

φ1(qr) = tan−1
(

∆y1
∆x1

)
, φ2(qr) = tan−1

(
∆y2
∆x2

)
(43)

with the corresponding derivatives

∂φ1
∂qr

(qr) =
1

l1(qr)2
(∆y1,−∆x1,−∆y1,∆x1, 0, 0) ,

∂φ2
∂qr

(qr) =
1

l2(qr)2
(0, 0,∆y2,−∆x2,−∆y2,∆x2) .

(44)

The deformation energy of the micro-model, see (5), is

Eε(q) =
∑
i

∑
µ,ν

kE
2

[
l
(
Cµνi q

)
−
√

2

2
ε

]2
+
kF
2

[
φ2
(
Cµi q

)
− φ1

(
Cµi q

)]2 . (45)

The variation of the deformation energy δEε = (∂Eε/∂q)δq determines the internal generalized forces of the
micro-model as [

f intε (q)
]T

=
∂Eε
∂q

=
∑
i

∑
µ,ν

(
kE

[
l
(
Cµνi q

)
−
√

2

2
ε

]
∂l

∂qe
(Cµνi q)Cµνi +

+kF
[
φ2
(
Cµi q

)
− φ1

(
Cµi q

)] [∂φ2
∂qr

(
Cµi q

)
− ∂φ1
∂qr

(
Cµi q

)]
Cµi

)
.

(46)

Kinematic boundary conditions can be imposed by perfect bilateral constraints 0 = g(q) ∈ Rm with the virtual work

contribution δW c = δgTλ = δqTW (q)λ, where W (q)T = ∂g
∂q (q) ∈ Rm×f is the matrix of generalized force directions

and λ ∈ Rm the vector of constraint forces. Together with the generalized internal forces (46), the constrained system
is thus determined by the set of nonlinear equations[

f intε (q) +W (q)λ
g(q)

]
= 0 (47)

which can be solved, at least locally, by a Newton-Raphson iteration scheme.

To compare the numerical results of the micro- and macro-model, beyond the micro-macro identi�cation (12),
the following micro-macro correspondences were taken into account

ρ

(
si + si−1

2

)
↔ ‖pi − pi−1‖

ε
, ϑ

(
si + si−1

2

)
↔ ϑi = tan−1

[
(pi − pi−1) · ey
(pi − pi−1) · ex

]
, (48)

where i = {1, . . . , N − 1}. Accepting the stretch ρ and the inclination angle ϑ to be the same for s = 0 and s = ε
2 as

well as for s = L and s = L− ε
2 , respectively, the micro-macro relations for the boundary conditions are given by

ρ(0)↔ ‖p1 − p0‖
ε

, ρ(L)↔ ‖pN−1 − pN−2‖
ε

, ϑ(0)↔ ϑ1 , ϑ(L)↔ ϑN−1 . (49)



10 Emilio Barchiesi, Simon R. Eugster, Luca Placidi and Francesco dell'Isola

micro-model macro-model
kE = KEε

−3 kF = KF ε
−1 KE = 10 J m KF = 1× 10−4 J m

semi-circle p0 = 0 pN−1 = 2ex χ(0) = 0 χ(π) = 2ex
L = πm p0 = 0 p1 = −ρ0εey ρ(0) = ρ0 ϑ(0) = −π2

pN−1 = 2ex pN−2 = 2ex − ρ0εey ρ(π) = ρ0 ϑ (π) = π
2

three-point p0 = 0 pN−1 = 1ex χ(0) = 0 χ(1) = 1ex
L = 1m p0 = 0 p1 · ey = 0 ϑ(0) = 0

pN−1 = 1ex pN−2 · ey = 0 ϑ(1) = 0
pN/2 · ey = ū χ

(
1
2

)
· ey = ū

Table 1. Boundary conditions and constitutive parameters for micro- and macro-model.

While the micro-strains l̃µν are related by

l̃µν(si)↔
1

ε2

(
l
(
Cµνi q

)
−
√

2

2
ε

)
, (50)

the deformation energy density ψ(s), which is the integrand of (24), is compared by the following relation

ψ(si)↔
∑
µ,ν

1

ε

kE
2

[
l
(
Cµνi q

)
−
√

2

2
ε

]2
+
kF
2

[
φ2
(
Cµi q

)
− φ1

(
Cµi q

)]2 . (51)

4. Numerical investigations

In this section we analyse the numerical solutions of two particular examples, the semi-circle test and the three-point
test, see Fig. 3. The focus of interest is mainly to investigate how much the solutions of discrete models deviate from
the solutions of the continuum. Mostly, the solutions of the continuum model are compared with the solutions of
two discrete systems made out of 41 and 101 cells, respectively. If not otherwise stated, the values KE = 10 J m and
KF = 1× 10−4 J m were applied. For the sti�nesses of the discrete system the scaling laws (19) were applied for
κ = 3 and η = 1, i.e. kE = KEε

−3 and kF = KF ε
−1.

Figure 3. Boundary conditions, reference con�guration (grey) and deformed con�guration (black)
for (a) Semi-circle test, ρ0 = 1.405 (b) Three-point test, ū = 0.4 m .

4.1. Semi-circle test

A cartoon of the semi-circle test is given in Fig. 3(a) in which the reference and deformed con�guration of the
discrete system are depicted. The applied boundary conditions for both the micro- and the macro-model are speci�ed
in Tab. 1. For a beam of undeformed length L = πm the positions of both ends are �xed at the distance of 2 m
from each other. Additionally, the inclination angles ϑ(0) = −ϑ(π) = −π/2 are prescribed such that the beam is
forced to a curved con�guration. Since the beam is a complete second gradient continuum, also the stretch ρ can be
prescribed. The stretch at both ends is given by ρ(0) = ρ(L) = ρ0.

The deformed con�gurations of the beam for three di�erent values of ρ0 are shown in Fig. 4. For the sake of
clarity only the micro-model's centre points, i.e. xi for i = {0, . . . , N−1}, are plotted. Fig. 4(b) shows the case ρ0 = 1,
for which the deformed shape of the continuum is a semicircle with radius R = 1 m. Due to the vanishing stretch
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gradient along the beam, i.e. ρ′ = 0 as it can be seen in Fig. 5(b), the total length of the beam remains equal to π m.
Moreover, the material curvature takes uniformly the value ϑ′ = 1/R = 1m−1. This corresponds with the solution
of the Elastica for the same boundary conditions. Note that the inextensibility condition inherently contained in the
formulation of the Elastica does not allow to prescribe another value of the stretch than ρ = 1. The slight deviations
of the discrete systems from the circle is mainly due to the discrete �approximation� of the boundary conditions.

In Fig. 4(a) and (c), the in�uence of the prescribed stretch becomes apparent. While for ρ0 < 1 the beam is
shortened, for ρ0 > 1 the beam is elongated. Besides the fact that it would have been a rather di�cult task to �nd
a deformation energy (24) without homogenization, another convenient feature comes along with that procedure. It
allows to develop a more intuitive understanding of boundary conditions which appear in higher gradient continua.
According to Tab. 1, the boundary condition of the micro-model which corresponds to the prescription of the stretch
is realized by �xing the distance between two adjacent centre points. If the distance between two adjacent points is
increased with respect to the reference con�guration, as in Fig. 3(a), an accordion-like (homogeneous) extension is
observed in the micro-model. Moreover, the boundary conditions of both stretch ρ and inclination angle ϑ e�ect over
a much larger distance than placement boundary conditions. This is precisely the characteristics contained in higher
gradient continua.

Figure 4. Semi-circle test. Deformed con�gurations of micro- and macro-model for (a) ρ0 = 0.5,
(b) ρ0 = 1, and (c) ρ0 = 1.405.

In Fig. 5 the micro-stretch l̃1D, the stretch ρ and the deformation energy density ψ are plotted for di�erent
values of ρ0. The symmetry in the boundary conditions is re�ected in the obtained curves parametrised by s ∈ [0, π].
We have the symmetry ρ(s) = ρ(π−s) and ϑ(s) = −ϑ(π−s) (not plotted). Consequently, the stretch gradient and the
material curvature are odd and even functions shifted by π, respectively, i.e. ρ′(s) = −ρ′(π−s) and ϑ′(s) = ϑ′(π−s).
Since all these kinematical quantities appear quadratically in (24), also the deformation energy density ψ is an even

function shifted by π. Furthermore, (22) implies that l̃1ν(s) = −l̃2ν(π − s). Accordingly, only the micro-stretch l̃1D

is plotted in Fig. 5.
As discussed before, for ρ0 = 1, the stretch ρ and the material curvature ϑ′ are uniformly equal to 1. It follows

then immediately from (22) and (24) that the micro-stretch and the deformation energy density take the values

l̃1D = −
√

2KF

KE + 4KF
= −1.41× 10−5 m−1 , ψ =

KEKF

KE + 4KF
= 1× 10−4 Jm−1 , (52)

which is indeed the case when considering Fig. 5.
In Fig. 6(a), the deformation energies are given as ρ0 increases. While for the continuum model the deformation

energy attains a minimum at ρ0 = 1, this does not hold true for the micro-model, whose deformation energies attain
a minimum at ρ0 > 1. The simulation were performed to come as close to the limit case

√
2 = 1.41 as possible.

The Lagrange multipliers satisfying the boundary conditions for ρ can be considered as double forces acting at the
ends of the beam. Their resultant value can be obtained by Castigliano's theorem by taking the derivative of the
deformation energy with respect to ρ, i.e. considering the inclination angles of the curves in Fig. 6(a). The closer

we come to
√

2 the steeper the curve gets and the double forces tend to in�nity. In this extreme regions numerical
analysis gets di�cult.

After a qualitative comparison between macro- and micro-model, we quantify the error by the absolute value
of the di�erence between the deformation energy of the macro-model E and the micro-model Eε. Within the micro-
macro identi�cation procedure, we accepted a discrete-continuum energy error o(ε0), i.e. of order 1 in ε. Therefore,
for a meaningful analysis the energy error in the �nite element solution of the macro-model (and/or that possibly
done when considering the small-strain assumption) should be o(ε), so to be negligible with respect to the discrete-
continuum energy error. In Fig. 6(b) the discrete-continuum energy error is plotted against 1/ε for the boundary
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Figure 5. Semi-circle test. Stretch ρ, micro-strain l̃1D and deformation energy density ψ of micro-
and macro-model for (a) ρ0 = 0.5, (b) ρ0 = 1, and (c) ρ0 = 1.405.

Figure 6. Semi-circle test. (a) Deformation energy of the micro-model (5), Eε, and the macro-model
(24), E (b) Discrete-continuum energy error on a log-log scale for di�erent boundary conditions.

stretches ρ0 = 0.75 and ρ0 = 1.25. An error o(ε0) which is in particular polynomial in ε behaves asymptotically like
Cε. Thereby C depends, among others, on the considered boundary conditions, the load and constitutive parameters.
Considering its logarithm, we have log(Cε) = log(C) − log(1/ε). In other words, if the order of convergence in ε is
equal to 1, the log-log energy error plot should result in a line with slope −1 as ε tends to 0. Fig. 6(b) shows exactly
this behaviour. It is therefore clear that, for the values of ε considered in our micro-to-macro convergence analysis,
the mesh-size chosen in solving the continuum model (constant with ε) is �ne enough.

4.2. Three-point test

The discrete system's reference and deformed con�guration of the three-point test are depicted in Fig. 3(b). The
applied boundary conditions for both the micro- and the macro-model are speci�ed in Tab. 1. For a beam of unde-
formed length L = 1m at both ends the positions and the inclination angles are �xed. In the centre of the beam the
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vertical displacement ū is prescribed. We remark that the small strain approximation is for each point (to di�erent
extents) as less valid as ū increases and, in what follows, we have been using the deformation energy (24).

macro 41 cells 101 cells

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

u · ex + s [m]

u
·e

y
[m

]

(a)

0 0.2 0.4 0.6 0.8 1

1.06

1.08

1.1

1.12

s [m]

ρ
[−

]

(b)

0 0.2 0.4 0.6 0.8 1

−0.5

0

0.5

s [m]

ϑ
[−

]

(c)

0 0.2 0.4 0.6 0.8 1

0

1

2

·10−3

s [m]

ψ
[J
m

−
1
]

(d)

Figure 7. Three-point test. Micro- and macro model for ū = 0.2 m (a) Deformed con�guration (b)
Stretch ρ (c) Inclination angle ϑ (d) Deformation energy density ψ.

In Fig. 7 the deformed con�guration, the stretch ρ, the inclination angle ϑ and the deformation energy density
ψ are plotted for ū = 0.2 m. Also here, the symmetry in the boundary conditions is re�ected in the obtained curves
parametrised by s ∈ [0, 1]. We have the symmetries ρ(s) = ρ(1 − s) and ϑ(s) = −ϑ(1 − s). According to the same
arguments given in the semi-circle test, the deformation energy density (24) must be an even function shifted by
0.5. Fig. 7(d) shows that this property is ful�lled by both the micro- and the macro-model. Due to the symmetries

appearing also in the micro-stretches, in Fig. 8 only the micro-stretch l̃1D is plotted for di�erent values of ū.

Figure 8. Three-point test. Micro-stretch l̃1D of the micro- and macro-model for (a) ū = 0.1 m (b)
ū = 0.25 m (c) ū = 0.4 m.

In Figs. 9 the stretches ρ and the deformed con�gurations of the continuum are plotted for di�erent values of
ū. The remarkable phenomena appearing in this test is that for ū = 0.4408, one has ρ ≈

√
2 and ρ′ ≈ 0 everywhere.

Hence, if ū is tending to some value slightly greater than 0.4408 m, then ρ tends to
√

2. This is the value, where
the model undergoes a phase transition from a pantographic beam to a uniformly extensible cable. Even though this
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phase transition can be interpreted from the deformation energy (24) it is not directly captured by the continuum
model due to the restrictions made in the choice of minimal coordinates. The discrete model could overcome this
problem. However, as we will see below, stability problems become an issue for which reason the numerical solution
procedure needs to be extended.

Figure 9. Three-point test. (a) Stretch ρ (b) Deformed con�guration of macro-model.

In Fig. 10 the deformation energy for ū = 0.2 m as KE and KF increase. The red lines indicate the total
deformation energy as the kinematic constraints corresponding to KE → ∞ and to KF → ∞ are enforced. These
values are asymptotes for the black curves, indicating that the energy of the macro-model in (24), as KE → ∞,
converges to that in (28) and the energy of the micro-model (5) converges to that of the same system with extensional
springs replaced by rigid links. Let us consider Fig. 10(a). For ε→ 0, the asymptotes (red lines) related to the micro-
model converge to that of the macro-model, as well as the black curves do. Therefore, in agreement to what has been
suggested by heuristic analytical derivations, Fig. 10(a) indicates that interchanging ε→ 0 and KE →∞ to kE →∞
and ε → 0 leads to the same deformation energy. Similar conclusions can be drawn for KF → ∞ and kF → ∞,
referring to Fig. 10(b).

macro 41 cells 101 cells 501 cells 1001 cells

0 5 10 15
6.8

7

7.2

7.4

·10−4

6.892 · 10−4

KE [Jm]

E,
E ε

[J
]

(a)

0 100 200 300
10

11

12

11.195

KF [Jm]

E,
E ε
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]

(b)

Figure 10. Three-point test. Deformation energy of the micro-model (5), Eε, and the macro-model
(24), E , for ū = 0.2 m. The red lines indicate the deformation energies for cases in which the kinematic
constraints corresponding to (a) kE →∞,KE →∞ or (b) kF →∞,KF →∞ are enforced.

In Fig. 11(a) the deformation energy is plotted as the prescribed displacement ū increases. According to Cas-
tigliano's theorem the required pulling force in the centre of the beam corresponds with the slope of the deformation
energy graph ∂E/∂ū, and in turn to the Lagrange multiplier employed to enforce the corresponding kinematic con-
straint. The required change of force to pull the beam further (proportional � with positive ratio � to the sti�ness)
is positive and decreasing, tending to zero for ū approaching 0.405 m (see Fig. 12). Therefore, the Newton-Raphson
scheme does not converge and the simulation can not go further. Arclength methods such as the Riks' arc-length
method [50] have to be implemented in order to overcome this problem which is beyond the scope of this article.
The continuum model could be instead solved for values of ū greater than 0.405 m, showing negative and decreasing
sti�ness blowing up to −∞ for ū approaching 0.4408 m. Fig. 11(b) shows on a log-log scale the energy error between
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micro- and macro-model for decreasing length scale ε. Also for this test, the predicted discrete-continuum energy
error is o(ε0).

Figure 11. Three-point test. (a) Deformation energy of the micro-model (5), Eε, and the macro-
model (24), E (b) Discrete-continuum energy error on a log-log scale for di�erent boundary condi-
tions.
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Figure 12. Three-point test. Plot of the Lagrange multiplier λ employed to enforce the constraint
χ(1/2) · ey = pN/2 · ey = ū (reaction force, rate of deformation energy with respect to ū according to
Castigliano's theorem) vs ū for the continuum model (continuous line) and the discrete one (dotted
line: 41 cells; dashed line: 101 cells). Newton-Raphson scheme has been employed for solving the
micro-model.

5. Conclusions

With (24), the deformation energy of a complete second gradient 1D-continuum in plane was derived by applying
Piola's micro-macro identi�cation procedure. The underlying family of discrete systems does not only lead to the
deformation energy but also allows for an intuitive interpretation of non-standard boundary conditions which appear
in this formulation.

The results of the kinematical quantities imply a qualitatively good agreement between the discrete and the
continuum model, already for a moderate number of cells. A quanti�cation of the discrepancy between the micro- and
the macro-model is given by the energy error whose behaviour is determined within the homogenization procedure
by the remainder in the energy (18). For the chosen scaling law, the remainder is of order 1 in ε. The same order
was observed in the numerical evaluation of two particular examples. This analysis of the quality of a continuum
model in approximating the behaviour of a discrete system is an important passage in establishing whether such a
synthetic continuum description is satisfactory. It becomes of particular interest if such a system is used as a building
block of a more complex structure. Indeed, like any beam element, it can be used for the analysis of assemblies of
pantographic beams involving �generalized�constraints, distributed/lumped rotational/extensional springs, etc. We
can conclude the following. Any discrete pantographic beam with given micro-sti�nesses, given micro-length scale
ε and given total length can be regarded as embedded within a family of discrete systems of variable micro-length
scale together with the proposed scaling law. The corresponding macro-sti�nesses are immediately obtained by the
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scaling law. We then know that the quality in terms of energy of the continuum to represent the discrete system
behaves linearly in the micro-length scale ε. Finally, the methodology and results of the present paper should serve
as prototypes for the asymptotic analysis of more complex systems, especially for a class of bi-dimensional structures
which generalises pantographic fabrics (cf. [38]).
Acknowledgements. Authors thank P. Seppecher for insightful discussions.

Appendix A

The terms θi and ϕ
µS
i − ϕ

µD
i are expanded up to �rst order by using the de�nitions (1) and (2) together with the

expansions (13) and (14). According to (12) and (13) the vectors between two adjacent points are

pi+1 − pi = ε
[
χ′(si) +

ε

2
χ′′(si) + o(ε)

]
, pi − pi−1 = ε

[
χ′(si)−

ε

2
χ′′(si) + o(ε)

]
. (53)

The arguments of the tan−1 in (2) can be written as functions of ε

hi+1(ε) =
(pi+1 − pi) · ey
(pi+1 − pi) · ex

(53)1=
χ′(si) · ey + ε

2χ
′′(si) · ey + o(ε)

χ′(si) · ex + ε
2χ
′′(si) · ex + o(ε)

,

hi(ε) =
(pi − pi−1) · ey
(pi − pi−1) · ex

(53)2=
χ′(si) · ey − ε

2χ
′′(si) · ey + o(ε)

χ′(si) · ex − ε
2χ
′′(si) · ex + o(ε)

.

(54)

It can readily be seen that hi(0) = hi+1(0) = [χ′(si) · ey] / [χ′(si) · ex]. Moreover

h′i+1(0) = −h′i(0) =
1

2[χ′ · ex]2
[(χ′′ · ey)(χ′ · ex)− (χ′′ · ex)(χ′ · ey)]

∣∣∣∣
s=si

=
1

2[χ′ · ex]2
χ′′ · (ey ⊗ ex − ex ⊗ ey) · χ′

∣∣∣∣
s=si

=
χ′′(si) · χ′⊥(si)

2 [χ′(si) · ex]
2 .

(55)

For a real valued function h(ε), we can expand tan−1(h(ε)) = tan−1(h(0)) + h′(0)
1+h(0)2 ε+ o(ε). Since hi(0) = hi+1(0),

the �rst terms in the Taylor series of both tan−1 expressions in (2) coincide and we obtain

θi =

[
1

1 + hi+1(0)2
h′i+1(0)− 1

1 + hi(0)2
h′i(0)

]
ε+ o(ε)

(55)
=

1

1 +
[
χ′(si)·ey
χ′(si)·ex

]2 χ′′(si) · χ′⊥(si)

[χ′(si) · ex]
2 ε+ o(ε)

=
χ′′(si) · χ′⊥(si)

‖χ′(si)‖2
ε+ o(ε)

(11)
= ϑ′(si)ε+ o(ε) .

(56)

For the expansion (1), we �rst require the expansion of the norm of a vector valued function a(ε), i.e. ‖a(ε)‖ =

‖a(0)‖+ a(0)·a′(0)
‖a(0)‖ ε+o(ε). Taking a(ε) to be the expansions appearing in the squared brackets of (53) and considering

that ρ(s) = ‖χ′(s)‖, we can write

‖pi±1 − pi‖ = ε

[
‖χ′(si)‖ ±

χ′(si) · χ′′(si)
‖χ′(si)‖

ε

2
+ o(ε)

]
= ε

[
ρ(si)± ρ′(si)

ε

2
+ o(ε)

]
. (57)

Consequently, the expansion of the squared expression of (57) is

‖pi±1 − pi‖2 = ε2
[
‖χ′‖2 ± (χ′ · χ′′)ε+ o(ε)

]
s=si

= ε2
[
ρ2 ± ρρ′ε+ o(ε)

]
s=si

. (58)

Using (15), (57) and (58) in the argument of cos−1 of (1)2, we can compute

h1S(ε) =
‖pi − pi−1‖2 + (l1Si )2 − (l2Di−1)2

2l1Si ‖pi − pi−1‖

=
ε2
[
ρ2 − ρρ′ε+

√
2ε(l̃1S − l̃2D) + o(ε)

]
ε22
[√

2
2 + l̃1Sε+ o(ε)

] [
ρ− ρ′ ε2 + o(ε)

]
∣∣∣∣∣∣
s=si

=
ρ2 + ε

[√
2(l̃1S − l̃2D)− ρρ′

]
+ o(ε)

√
2ρ+ ε

(
2l̃1Sρ−

√
2
2 ρ
′
)

+ o(ε)

∣∣∣∣∣∣
s=si

.

(59)



Pantographic beam: A complete second gradient 1D-continuum in plane 17

Similarly, the expansions of the arguments of cos−1 appearing in (1)1,3,4 are

h1D(ε) =
ρ2 + ε

[√
2(l̃1D − l̃2S) + ρρ′

]
+ o(ε)

√
2ρ+ ε

(
2l̃1Dρ+

√
2
2 ρ
′
)

+ o(ε)

∣∣∣∣∣∣
s=si

(60)

h2S(D)(ε) =
ρ2 + ε

[√
2(l̃2S(D) − l̃1D(S))− ρρ′

]
+ o(ε)

√
2ρ+ ε

(
2l̃2S(D)ρ−

√
2
2 ρ
′
)

+ o(ε)

∣∣∣∣∣∣
s=si

(61)

All functions are of the form hµν(ε) = [a+ εbµν + o(ε)] / [c+ εdµν + o(ε)] with hµν(0) = a/c and (hµν)′(0) =
(bµνc− dµνa)/c2. The angles ϕµνi can thus be expanded as

ϕµνi = cos−1 [hµν(0)]− ε√
1− hµν(0)2

(hµν)′(0) + o(ε) . (62)

Expanding ϕµSi − ϕ
µD
i with the help of (62), the �rst term thereof cancels. Inserting the derivative with respect to

ε evaluated at ε = 0 of (59) and (60)1, we obtain

ϕ1S
i − ϕ1D

i =

√
2ρ
[
2ρρ′ +

√
2(l̃1D − l̃2S + l̃2D − l̃1S)

]
+ ρ2

[
2ρ(l̃1S − l̃1D)−

√
2ρ′
]

2ρ2
√

1− ρ2

2

∣∣∣∣∣∣
s=si

ε+ o(ε)

=

√
2
2 ρρ

′ + (l̃2D − l̃2S) + (ρ2 − 1)(l̃1S − l̃1D)

ρ
√

1− ρ2

2

∣∣∣∣∣∣
s=si

ε+ o(ε) . (63)

In the same manner we obtain the expansion for the di�erence in angles of the oblique springs indexed by µ = 2.
Moreover, we manipulate the expression slightly to get rid of the fractions within the nominator and denominator
which results in

ϕ2S
i − ϕ2D

i =

√
2(ρ2)′ + 4

[
(l̃1D − l̃1S) + (ρ2 − 1)(l̃2S − l̃2D)

]
2
√

2ρ
√

2− ρ2

∣∣∣∣∣
s=si

ε+ o(ε) . (64)
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